Final Assignment 2

Essential and Density Topologies on Continuous Domains

Orlando Ferrari

Supervisor: Hadrian Andradi, Ph.D.

10 January 2025

Undergraduate Program in Mathematics
Department of Mathematics
Faculty of Mathematics and Natural Science
Universitas Gadjah Mada

Concept Mapping

Given by [Rusu and Ciobanu (2016)], main focus of thesis

Concept Mapping

Given by [Rusu and Ciobanu (2016)], main focus of thesis

Why? We will construct a topology such that bases for continuous domain coincide with dense sets.

Partial Orders

Definition 1 (Partially ordered set)

Let X be a non-empty set. A relation \leq on the set X is a **partial order** if \leq is reflective, antisymmetric, and transitive. The pair (X, \leq) is referred to as a partially ordered set (poset).

Partial Orders

Definition 1 (Partially ordered set)

Let X be a non-empty set. A relation \leq on the set X is a **partial order** if \leq is reflective, antisymmetric, and transitive. The pair (X, \leq) is referred to as a partially ordered set (poset).

Definition 2 (Directed set)

The non-empty set $D \subseteq X$ is **directed** provided that every pair of elements in D has an upper bound in D.

Definition 3 (Directed-complete posets (dcpo))

The poset (X, \leq) is a **directed-complete poset (dcpo)** if every directed subset of X admits a supremum.

This thesis will focus on directed-complete posets (dcpos).

Topological Spaces

Definition 4 (Topological Spaces)

Let X be a non-empty set. The collection $\tau \subseteq \mathcal{P}(X)$ is a topology if it satisfies the following axioms:

- (T1) \varnothing , $X \in \tau$;
- (T2) For all $A, B \in \tau, A \cap B \in \tau$;
- (T3) For all subcollections $C \subseteq \tau$, $\bigcup C \in \tau$.

The ordered pair (X, τ) is a **topological space** and a set $A \in \tau$ is referred to as an **open** set.

Definition 5

The set $A \subseteq X$ is a **closed** set if $X \setminus A$ is open.

We refer to a set that is both open and closed as a clopen set.

Topology on Poset

Definition 6

For every $x \in X$, define $\uparrow x = \{y \in X \mid x \leq y\}$. Furthermore, for any given subset $A \subseteq X$, let $\uparrow A = \bigcup_{x \in A} \uparrow x$. Analogously, let $\downarrow x = \{y \in X \mid y \leq x\}$ and $\downarrow A = \bigcup_{x \in A} \downarrow x$.

A set *A* is an **upper (lower) set** provided that $A = \uparrow A$ ($A = \downarrow A$).

Topology on Poset

Definition 6

For every $x \in X$, define $\uparrow x = \{y \in X \mid x \leq y\}$. Furthermore, for any given subset $A \subseteq X$, let $\uparrow A = \bigcup_{x \in A} \uparrow x$. Analogously, let $\downarrow x = \{y \in X \mid y \leq x\}$ and $\downarrow A = \bigcup_{x \in A} \downarrow x$.

A set A is an **upper (lower) set** provided that $A = \uparrow A$ ($A = \downarrow A$).

Proposition 7

The collection $\tau = \{A \mid A \subseteq X, A = \uparrow A\}$ is a topology and referred to as the **Alexandroff topology**.

Essential/Way-Below Relation

Let (X, \leq) be a dcpo.

Definition 8

For any x or $y \in X$, we say that x is an **essential part** of y or x is **way-below** y, denoted by $x \ll y$, if for every directed set $D \subseteq X$ such that $y \le \sup D$, there exists $d \in D$ such that $x \le d$.

Essential/Way-Below Relation

Let (X, \leq) be a dcpo.

Definition 8

For any x or $y \in X$, we say that x is an **essential part** of y or x is **way-below** y, denoted by $x \ll y$, if for every directed set $D \subseteq X$ such that $y \le \sup D$, there exists $d \in D$ such that $x \le d$.

Definition 9

For any $x \in X$, we say that x is **compact** if x is an essential part of x itself. The set of all compact elements of X is denoted by K(X).

Essential Topology

Let (X, \leq) be a dcpo.

Definition 10

For every $x \in X$, define $\uparrow x = \{y \in X \mid x \ll y\}$. Furthermore, for any given subset $A \subseteq X$, let $\uparrow A = \bigcup_{x \in A} \uparrow x$. Analogously, let $\mathop{\downarrow} x = \{y \in X \mid y \ll x\}$ and $\mathop{\downarrow} A = \bigcup_{x \in A} \mathop{\downarrow} x$.

Essential Topology

Let (X, \leq) be a dcpo.

Definition 10

For every $x \in X$, define $\uparrow x = \{y \in X \mid x \ll y\}$. Furthermore, for any given subset $A \subseteq X$, let $\uparrow A = \bigcup_{x \in A} \uparrow x$. Analogously, let $\mathop{\downarrow} x = \{y \in X \mid y \ll x\}$ and $\mathop{\downarrow} A = \bigcup_{x \in A} \mathop{\downarrow} x$.

Definition 11 ([Rusu and Ciobanu (2016)])

A set $A \subseteq X$ is an **e-open** set if $\mathop{\downarrow} A \subseteq A$; it is an **e-closed** set if $\mathop{\uparrow} A \subseteq A$; furthermore, when A is concurrently e-open and e-closed, it is referred to as an e-clopen set.

Proposition 12

The collection of e-open sets on a dcpo (X, \leq) a topology. This topology is referred to as the **essential topology** or **e-topology**, denoted by τ_e .

Scott Topology

Let (X, \leq) be a dcpo.

Definition 13

A set $O \subseteq X$ is **Scott-open** if it is an upper set and for every directed set D with $\sup D \in O$, the set $D \cap O$ is non-empty.

The complement of a Scott-open set is a **Scott-closed** set.

Proposition 14

The collection of Scott-open set, σ_X , is a topology on X, and referred to as the **Scott topology**.

Density Topology

The definition of the density topology is provided by [Rusu and Ciobanu (2016)].

Proposition 15 ([Rusu and Ciobanu (2016)])

Let (X, \leq) be a dcpo. The collection $\mathcal{D} = \{D \cap G \mid D \in \sigma_X, G \in \tau_e\}$ generates a topology on X. That is,

$$\rho_X = \left\{ \bigcup \mathcal{D}' \mid \mathcal{D}' \subseteq \mathcal{D} \right\}.$$

The topology ρ_X is referred to as the **density topology**.

Density Topology

The definition of the density topology is provided by [Rusu and Ciobanu (2016)].

Proposition 15 ([Rusu and Ciobanu (2016)])

Let (X, \leq) be a dcpo. The collection $\mathcal{D} = \{D \cap G \mid D \in \sigma_X, G \in \tau_e\}$ generates a topology on X. That is,

$$\rho_X = \left\{ \bigcup \mathcal{D}' \mid \mathcal{D}' \subseteq \mathcal{D} \right\}.$$

The topology ρ_X is referred to as the **density topology**.

Proposition 16

The density topology is the smallest common refinement of the essential topology and the Scott topology.

Domains and Basis

Definition 17

The dcpo (X, \leq) is a **continuous domain** (or a domain) provided that for any $x \in X$, the set $\mathop{\downarrow} x$ is directed and $x = \sup(\mathop{\downarrow} x)$.

Definition 18

The dcpo (X, \leq) is an **algebraic domain** provided that for any $x \in X$, the set $\mathop{\downarrow} x \cap K(X)$ is directed and $x = \sup(\mathop{\downarrow} x \cap K(X))$.

Domains and Basis

Definition 17

The dcpo (X, \leq) is a **continuous domain** (or a domain) provided that for any $x \in X$, the set $\mathop{\downarrow} x$ is directed and $x = \sup(\mathop{\downarrow} x)$.

Definition 18

The dcpo (X, \leq) is an **algebraic domain** provided that for any $x \in X$, the set $\mathop{\downarrow} x \cap K(X)$ is directed and $x = \sup(\mathop{\downarrow} x \cap K(X))$.

Definition 19

A set $B \subseteq X$ is a **basis for** X provided that for every $x \in X$, the set $B_x := B \cap {} \downarrow x$ contains a directed set D_x such that x is the supremum of D_x .

One can prove that a dcpo (X, \leq) is a continuous domain if and only if it has a basis.

Examples of Basis for a Continuous Domain

Example 20 (Extended Real Line)

Consider the dcpo $(\mathbb{R}_{\infty}, \leq)$ where \leq is the usual ordering of $\mathbb{R}_{\infty} = (-\infty, \infty]$. One can assert that $x \ll y$ iff x < y for any $x, y \in \mathbb{R}_{\infty}$. The set of rational numbers \mathbb{Q} is a basis for \mathbb{R}_{∞} .

Examples of Basis for a Continuous Domain

Example 20 (Extended Real Line)

Consider the dcpo $(\mathbb{R}_{\infty}, \leq)$ where \leq is the usual ordering of $\mathbb{R}_{\infty} = (-\infty, \infty]$. One can assert that $x \ll y$ iff x < y for any $x, y \in \mathbb{R}_{\infty}$. The set of rational numbers \mathbb{Q} is a basis for \mathbb{R}_{∞} .

For any set X, $\mathcal{P}_{fin}(X) := \{A \in \mathcal{P}(X) \mid |A| < \infty\}$

Example 21 (Power Set)

Consider the dcpo $(\mathcal{P}(X),\subseteq)$ where X is a set. One can assert that $A\ll B$ iff $A\in\mathcal{P}_{\mathit{fin}}(B)$ for any $A,B\in\mathcal{P}(X)$. The set $\mathcal{P}_{\mathit{fin}}(X)$ is a basis for $\mathcal{P}(X)$. Furthermore, $\mathcal{P}_{\mathit{fin}}(X)=K(\mathcal{P}(X))$.

Basis for Essential Topology

Let (X, \leq) be a dcpo.

Proposition 22

For every $x \in X$, there exists the smallest e-open set that contains x; that is, $V_x := \{x\} \cup \downarrow x$.

Proposition 23

The collection $\{\{x\} \cup \ | \ x \mid x \in X\}$ is a basis for the topology τ_e .

Examples of Essential Topology

Example 24 (Extended Real Line)

Consider the continuous domain $(\mathbb{R}_{\infty}, \leq)$ where \leq is the usual ordering of $\mathbb{R}_{\infty} = (-\infty, \infty]$. For any $x \in \mathbb{R}_{\infty}$, $\downarrow x = (-\infty, x)$, we have $V_x = (-\infty, x]$. Thus, every e-open set can be expressed in the form of $(-\infty, a]$ or $(-\infty, a)$ where $a \in \mathbb{R}_{\infty}$.

Examples of Essential Topology

Example 24 (Extended Real Line)

Consider the continuous domain $(\mathbb{R}_{\infty}, \leq)$ where \leq is the usual ordering of $\mathbb{R}_{\infty}=(-\infty,\infty]$. For any $x\in\mathbb{R}_{\infty}$, $\downarrow x=(-\infty,x)$, we have $V_x=(-\infty,x]$. Thus, every e-open set can be expressed in the form of $(-\infty,a]$ or $(-\infty,a)$ where $a\in\mathbb{R}_{\infty}$.

Example 25 (Power Set)

Consider the algebraic domain $(\mathcal{P}(X),\subseteq)$ where X is a set. The set $\mathcal{O}\subseteq\mathcal{P}(X)$ is e-open iff

$$\bigcup_{A \in \mathcal{O}} \mathcal{P}_{fin}(A) = \bigcup_{A \in \mathcal{O}} \sharp A = \sharp \mathcal{O} \subseteq O$$

which is equivalent to say that for every $A \in \mathcal{O}$, it holds that $\mathcal{P}_{fin}(A) \subseteq \mathcal{O}$.

Basis for Density Topology

Recall that the collection $\{\{x\} \cup \mbox{$\downarrow$} x \mid x \in X\}$ is a basis for the e-topology on a dcpo (X, \leq) .

Proposition 26

Let (X, \leq) be a continuous domain, then the collection $\{\uparrow x \mid x \in X\}$ is a basis for the Scott topology.

Basis for Density Topology

Recall that the collection $\{\{x\} \cup \mbox{$\downarrow$} x \mid x \in X\}$ is a basis for the e-topology on a dcpo (X, \leq) .

Proposition 26

Let (X, \leq) be a continuous domain, then the collection $\{\uparrow x \mid x \in X\}$ is a basis for the Scott topology.

Proposition 27

Let (X, \leq) be a continuous domain. The collection $\{\uparrow x \cap (\{y\} \cup \downarrow y) \mid x, y \in X\}$ is a basis for the density topology.

Example of Density Topology

Example 28 (Extended Real Line)

Consider the continuous domain $(\mathbb{R}_{\infty}, \leq)$. The collection

$$\{(x,\infty] \mid x \in \mathbb{R}_{\infty}\}$$

is a basis for the Scott topology $\sigma_{\mathbb{R}_{\infty}}$. On the other hand, the collection

$$\{(-\infty, x] \mid x \in \mathbb{R}_{\infty}\}$$

is a basis for the e-topology on \mathbb{R}_{∞} . Hence, by Proposition 27 the collection

$$\{(x,\infty]\cap(-\infty,y]\mid x,y\in\mathbb{R}_{\infty}\}=\{(x,y]\mid x,y\in\mathbb{R}_{\infty}\}.$$

is a basis for the density topology $\rho_{\mathbb{R}_{\infty}}$.

Proposition 29

Let (X, \leq) be a continuous domain with $B \subseteq X$ being the basis for X, then the set B is e-dense in X.

Proposition 29

Let (X, \leq) be a continuous domain with $B \subseteq X$ being the basis for X, then the set B is e-dense in X.

We can simplify the characterization of an e-dense set as follows.

Proposition 30

Let (X, \leq) be a dcpo where $\uparrow X = X$ and $B \subseteq X$. The following assertions are equivalent:

- (1) B is e-dense;
- (2) $\uparrow B = X$;
- (3) $X \setminus B \subseteq \uparrow B$.

Theorem 31

Let (X, \leq) be a continuous domain and $B \subseteq X$. The following assertions are equivalent:

- (1) B is a basis for X;
- (2) $\uparrow(\uparrow x \cap B) = \uparrow x \text{ for all } x \in X;$
- (3) $\uparrow(\uparrow A \cap B) = \uparrow A \text{ for all } A \subseteq X;$
- (4) \uparrow ($F \cap B$) = \uparrow F for all e-closed set F;
- (5) $\operatorname{cl}_e(\uparrow A \cap B) = \uparrow A \text{ for all } A \subseteq X;$
- (6) for every $D \in \sigma_X$ and $G \in \tau_e$ such that $D \cap G \neq \emptyset$, we have $D \cap G \cap B \neq \emptyset$.

An e-Dense Set is not Always a Basis for a Continuous Domain

Recall:

- Theorem 31((1)⇔(2)) establishes that the set B serves as a basis for X if we
 can employ B to interpolate to elements.
- Proposition 29 establishes that a basis for X is an e-dense set.

An e-Dense Set is not Always a Basis for a Continuous Domain

Recall:

- Theorem 31((1)⇔(2)) establishes that the set B serves as a basis for X if we
 can employ B to interpolate to elements.
- Proposition 29 establishes that a basis for X is an e-dense set.

However, the converse: e-dense set is a basis, does not always hold true.

Example 32 (Extended Real Line)

Consider the continuous domain $(\mathbb{R}_{\infty}, \leq)$. Since $\uparrow \mathbb{Z} = \mathbb{R}_{\infty}$, the set \mathbb{Z} is e-dense by Proposition 30((1) \Leftrightarrow (2)). However, \mathbb{Z} is not a basis for \mathbb{R}_{∞} since by taking 0 and $1 \in \mathbb{R}_{\infty}$, we cannot find any element $b \in \mathbb{Z}$ such that $0 \ll b \ll 1$. From Theorem 31((1) \Leftrightarrow (2)), we deduce that \mathbb{Z} is not a basis for \mathbb{R}_{∞} .

Corollary 33

Let (X, \leq) be a continuous domain. The non-empty set B is a basis for X if and only if B is e-dense in each non-empty Scott-open set; that is, $\operatorname{cl}_e(A \cap B) = A$ for all $A \in \sigma_X$.

Proof. Theorem $31((1) \Leftrightarrow (5))$

Corollary 33

Let (X, \leq) be a continuous domain. The non-empty set B is a basis for X if and only if B is e-dense in each non-empty Scott-open set; that is, $\operatorname{cl}_e(A \cap B) = A$ for all $A \in \sigma_X$.

Proof. Theorem $31((1) \Leftrightarrow (5))$

Theorem 34

Let (X, \leq) be a continuous domain. The continuous domain (X, \leq) is algebraic if and only if $\operatorname{cl}_e(F \cap K(X)) = \uparrow F$ for every e-closed set F.

Proof. Theorem $31((1)\Leftrightarrow(4))$ and $31((1)\Leftrightarrow(5))$

Basis for Continuous Domain iff ρ_X -dense

We shall assess the main inquiries of this thesis; that is, finding a topology such that bases for a continuous domain coincides with dense sets in such topology.

Theorem 35

If (X, \leq) is a continuous domain, the non-empty set $B \subseteq X$ is a basis for X if and only if B is ρ_X -dense in X.

Proof. Theorem $31((1) \Leftrightarrow (6))$

Basis for Continuous Domain iff ρ_X -dense

We shall assess the main inquiries of this thesis; that is, finding a topology such that bases for a continuous domain coincides with dense sets in such topology.

Theorem 35

If (X, \leq) is a continuous domain, the non-empty set $B \subseteq X$ is a basis for X if and only if B is ρ_X -dense in X.

Proof. Theorem $31((1) \Leftrightarrow (6))$

Definition 36

The collection of all ρ_X -dense subsets of X is denoted by \mathcal{B}_X .

Topological Properties of \mathcal{B}_X and K(X)

Theorem 37

Let (X, \leq) be a continuous domain.

- (i) $x \in K(X)$ if and only if $\{x\} \in \rho_X$;
- (ii) $K(X) \in \rho_X$;
- (iii) If $K(X) \neq \emptyset$, then $K(X) \setminus \{x\} \notin \mathcal{B}_X$ for all $x \in K(X)$;
- (iv) If $B \in \mathcal{B}_X$ and $x \notin K(X)$, then $x \in \mathrm{cl}_{\rho_X}(B \setminus \{x\})$;
- (v) If $B \in \mathcal{B}_X$ and $x \notin K(X)$, then $B \setminus \{x\} \in \mathcal{B}_X$;
- (vi) $K(X) = \bigcap \mathcal{B}_X$;
- (vii) $K(X) \subseteq \operatorname{int}_{\rho_X} B$ for all $B \in \mathcal{B}_X$.

Algebraic Domain in Density Topology

A set A in a topological space (X, τ) is nowhere dense if $\operatorname{int}_{\tau}(\operatorname{cl}_{\tau} A) = \emptyset$.

Theorem 38

Let (X, \leq) be a continuous domain. The following assertions are equivalent:

- (1) (X, \leq) is an algebraic domain;
- (2) $\bigcap \mathcal{B}_X \in \mathcal{B}_X$;
- (3) $(\mathcal{B}_X,\supseteq)$ is a ccpo;
- (4) $(\mathcal{B}_X,\supseteq)$ is a dcpo;
- (5) $\bigcap (\mathcal{B}_X \cap \rho_X) \in \mathcal{B}_X$;
- (6) union of any collection of non-empty ρ_X -nowhere dense sets is not ρ_X -open.

Summary: e-topology

- 1. The essential topology is defined with a motivation akin to that of the Alexandroff topology.
- 2. Essential topology is an intermediate topology to answer our main inquiries: construction of a topology such that bases for a continuous domain coincide with dense sets in such topology.
- 3. We are able to gain new characterization of a bases and algebraic domains through essential topology (See Theorem 31).
- 4. However, essential topology is not sufficient to assert bases coincide with dense sets (See Example 32).

Summary: Density Topology

- 1. The density topology is defined as the smallest refinement of essential topology and Scott topologies.
- 2. Within the context of density topology, bases for a continuous domain concide with ρ_X -dense sets (See Theorem 35).
- 3. Using density topology, we are able to provide a topological view for the properties of the bases and compact elements (See Theorem 37).
- 4. Additionally, we are able to characterize an algebraic domain through density topology (See Theorem 38).

Future Inquiries

- 1. Future research may build upon the findings of this study by investigating additional properties such as connectivity, local compactness, and the convergence of the specified topologies.
- Given that both examined topologies are associated with the Scott topology, it appears plausible to investigate the relationship between continuous functions defined on these novel topologies and Scott-continuous functions, as elaborated by [Scott (1972)].
- 3. The generalization of the results from this study could be explored; for instance, by analyzing the essential and density topologies of SI-topology through the lens of the I-way-below relation, as presented by [Andradi (2018)].

References i

- Abramsky, S. and Jung, A., 1994. Domain Theory.
- Andradi, H., Shen, C., Ho, W.K., Zhao, D., 2018. *A New Convergence Inducing the SI-Topology*. Filomat Vol. 32 Issue 17, 6017–6029
- Bartle, R.G. and Sherbert, D.R., 2011. *Introduction to Real Analysis* Vol. 4. John Wiley & Sons, Inc., New York.
- Edalat, A. and Heckmann, R., 1998. *A Computational Model for Metric Spaces*. Theoretical Computer Science Vol. 193, 53-73.

References ii

- Gierz, G., et al., 2003. *Continuous Lattices and Domains*. Cambridge University Press.
- Larrecq, J.G., 2013. *Non-Hausdorff Topology and Domain Theory*. Cambridge University Press.
- Markowsky, G., 1976. *Chain-complete posets and directed sets with applications*. Algebra Universalis Vol. 6 Issue 1, 53–68.
- Munkres, J., 2018. *Topology*, second edition. Pearson Education.
- Pinter, C.C., 2014. A Book of Set Theory. Dover Publications, Inc.

References iii

- Rusu, D. and Ciobanu, G., 2016. *Essential and density topologies of continuous domains*. Annals of Pure and Applied Logic Vol. 167 Issue 9, 726–736.
- Scott, D., 1972. *Continuous Lattices*. Toposes, algebraic geometry and logic, 97–136.
- Steen, L.A. and Seebach, J.A., 1978. *Counterexamples in Topology*, second edition. Springer-Verlag New York Inc., New York.

Terima Kasih